# **MODBUS/TCP Fieldbus manual**

Lexium Lexium MDrive Ethernet Products V1.00,06.2013





| MODBUS/TCP Fieldbus Manual for Lexium MDrive |               |                 |  |
|----------------------------------------------|---------------|-----------------|--|
| Date Revision Changes                        |               | Changes         |  |
| 06/27/2013                                   | V1.00,06.2013 | Initial Release |  |
|                                              |               |                 |  |
|                                              |               |                 |  |
|                                              |               |                 |  |
|                                              |               |                 |  |
|                                              |               |                 |  |
|                                              |               |                 |  |
|                                              |               |                 |  |
|                                              |               |                 |  |

The information in Schneider Electric Motion USA product documentation and on this web site has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

Schneider Electric Motion USA reserves the right to make changes without further notice to any products to improve reliability, function or design. Schneider Electric Motion USA does not assume any liability arising out of the application or use of any product or circuit described; neither does it convey any license under its patent rights of others.

Schneider Electric Motion USA's general policy does not recommend the use of its products in life support or aircraft applications wherein a failure or malfunction of the product may directly threaten life or injury. Per the terms and conditions of sales of Schneider Electric Motion USA, the user of Schneider Electric Motion USA products in life support or aircraft applications assumes all risks of such use and indemnifies Schneider Electric Motion USA against all damages.

# Important information

This manual is part of the product.

Carefully read this manual and observe all instructions.

Keep this manual for future reference.

Hand this manual and all other pertinent product documentation over to all users of the product.

Carefully read and observe all safety instructions and the chapter "Before you begin - safety information".

This page intentionally left blank

## **Table of Contents**

|   | Impo      | ortant information                                   | 3   |
|---|-----------|------------------------------------------------------|-----|
|   | About th  | is manual Further reading                            |     |
|   |           | i utitiei readilig                                   | '   |
| 1 | Introduct | tion                                                 | 1-1 |
| - | 1.1       | About this manual                                    |     |
|   | 1.2       | Supported protocols                                  |     |
|   | 1.3       | Documentation reference                              |     |
|   | 1.4       | Product software                                     |     |
|   |           | 1.4.1 Lexium MDrive Software Suite                   |     |
|   |           |                                                      |     |
| 2 | Safety    |                                                      |     |
|   | 2.1       | Qualification of personnel                           |     |
|   | 2.2       | Intended Use                                         |     |
|   | 2.3       | Hazard Categories                                    |     |
|   | 2.4       | Basic information                                    | 2-3 |
| 3 | MODBII    | Simplementation                                      | 2 1 |
| 3 |           | S Implementation                                     |     |
|   | 3.1       | MODBUS overview                                      |     |
|   | 3.2       | Message format                                       |     |
|   |           | 3.2.1 ADU (application data unit)                    | 3-3 |
| 4 | Function  | codes                                                | 4-1 |
| • | 4.1       | Device ID                                            |     |
|   |           | 4.1.1 Read device identification – 43/14             |     |
|   |           | (0x2B/0x0E)                                          | 4-1 |
|   | 4.2       | Public function codes                                |     |
|   |           | 4.2.1 Read digital inputs 02 (0x02)                  |     |
|   |           | 4.2.2 Read coils (digital outputs) – 01 (0x01)       |     |
|   |           | 4.2.3 Write single coil (digital output) – 05 (0x05) |     |
|   |           | 4.2.4 Read holding registers – 03 (0x03)             |     |
|   |           | 4.2.5 Write multiple registers – 16 (0x10)           |     |
|   | 4.3       | Manufacturer specific function codes                 |     |
|   |           | 4.3.1 Manufacturer specific commands using           | 0   |
|   |           | 65 (0x41) and 66 (0x42)                              | 4-8 |
|   |           | 4.3.2 Read manufacturer specific – 65 (0x41)         |     |
|   |           | 4.3.3 Write manufacturer specific – 66 (0x42)        |     |
|   |           | 1.0.0 Title manadator opcome 00 (0x+2)               |     |
| 5 | Register  | map                                                  |     |
|   | 5.1       | hMTechnology specific registers                      |     |
|   | 5.2       | User variable registers                              |     |
| _ |           |                                                      |     |
| 6 | TCP/IP C  | Configuration Utility                                | 6-1 |

# **List of Figures**

| Figure 3.1: Example MODBUS network              | 3-  |
|-------------------------------------------------|-----|
| Figure 3.2: Client-server model                 | 3-2 |
| Figure 3.3: Ethernet data packet for MODBUS/TCP | 3-2 |
| Figure 3.4: MODBUS/TCP data packet construction | 3-0 |

# **List of Tables**

| Table 3.1 MBAP header               | 3-3 |
|-------------------------------------|-----|
| Table 4.1: Supported function codes | 4-1 |

## **About this manual**



The information provided in this manual supplements the product hardware manual.

Source manuals

The latest versions of the manuals can be downloaded from the Internet at:

http://motion.schneider-electric.com

Applicable manuals for Lexium Lexium MDrive Ethernet products are:

- MCode Programming and Software Reference manual
- MODBUS/TCP Fieldbus manual
- EtherNet/IP Fieldbus manual

Graphic User Interface software

For easier prototyping and development, a Graphic User Interface (GUI) is available for use with Lexium Lexium MDrive products. This software is available for download from the Internet at:

http://motion.schneider-electric.com

## **Further reading**

Recommended literature for further reading.

Reference documents

The MODBUS Specification and Implementation guides

http://www.modbus.org/specs.php

Tthe MODBUS/TCP toolkit: http://www.modbus.org/toolkit.php

User Association

MODBUS Organization: http://www.modbus.org/

Page intentionally left blank

## 1 Introduction

#### 1.1 About this manual

This manual is for use with the Lexium Lexium MDrive Ethernet models when the Modbus/TCP protocol is needed. This manual was developed from the perspective that you already have an understanding of the MODBUS protocol.

For detailed technical information on the MODBUS/TCP specification, please see http://www.modbus.org/.

## 1.2 Supported protocols

The new Lexium Lexium MDrive Ethernet products support three protocols in a single package:

- EtherNet/IP EtherNet/IP protocol popularized by Allen Bradley and Rockwell Automation and managed by the ODVA.
  - If using the device using MCode/TCP, please see the EtherNet/ IP Fieldbus Manual located on the web site at http://www.motion.schneider-electric.com/downloads/manuals.html.
- MCode/TCP Schneider Electric Motion USA's proprietary programming language for Lexium MDrive Ethernet products, adapted to utilize TCP/IP message formatting.
  - If using the device using MCode/TCP, please see the MCode Programming and Reference Manual located on the web site at <a href="http://motion.schneider-electric.com">http://motion.schneider-electric.com</a>
- **MODBUS/TCP** A standard open industrial protocol supported by a variety of machine components such as programmable controllers, drives and controls, I/O modules and switches.

These protocols may be used separately or interchangeably, as is required by the constraints of the application by connecting to the port that the protocol is running on, 503 for MCode/TCP and 502 for MODBUS/TCP.

First configuration connection will need to be over MCode/TCP using the Ethernet Interface, which is part of the Lexium MDrive Software Suite to change the IP address of the device. The Suite and it's associated manual my be downloaded from the web site at:

http://motion.schneider-electric.com

The Information on MCode is found in the MCode Programming and Software Reference available on the web site at

http://motion.schneider-electric.com

#### 1.3 Documentation reference

The following user's manuals are available for the MODBUS devices:

- Product hardware manual, describes the technical data and installation of the product.
- Product software manual, describes the configuration and programming of the product.
- Quick Reference, describes the basic wiring, connection and use of this product. The quick reference is shipped in printed form with the product.

This documentation is also available for download from our web site at: http://www.motion.schneider-electric.com.

#### 1.4 Product software

#### 1.4.1 Lexium MDrive Software Suite

The Ethernet Interface is a software tool for setting the IP, upgrading firmware and sending commands to the MODBUS device. It is part of the Lexium MDrive Software Suite.

This software is required for the initial setup of the device.

Installation and usages instructions are to be found in Lexium MDrive Software Suite Manual.

This software and manual may be downloaded from the web site at: http://www.motion.schneider-electric.com.

## 2 Safety

## 2.1 Qualification of personnel

Only appropriately trained persons who are familiar with and understand the contents of this manual and all other pertinent product documentation are authorized to work on and with this product. In addition, these persons must have received safety training to recognize and avoid hazards involved. These persons must have sufficient technical training, knowledge and experience and be able to foresee and detect potential hazards that may be caused by using the product, by changing the settings and by the mechanical, electrical and electronic equipment of the entire system in which the product is used.

All persons working on and with the product must be fully familiar with all applicable standards, directives, and accident prevention regulations when performing such work.

#### 2.2 Intended Use

The functions described in this manual are only intended for use with the basic product; you must read and understand the appropriate product manual.

The product may only be used in compliance with all applicable safety regulations and directives, the specified requirements and the technical data.

Prior to using the product, you must perform a risk assessment in view of the planned application. Based on the results, the appropriate safety measures must be implemented.

Since the product is used as a component in an entire system, you must ensure the safety of persons by means of the design of this entire system (for example, machine design).

Operate the product only with the specified cables and accessories. Use only genuine accessories and spare parts.

Any use other than the use explicitly permitted is prohibited and can result in hazards.

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel.

The product must NEVER be operated in explosive atmospheres (hazardous locations, Ex areas).and spare parts.

## 2.3 Hazard Categories

Safety instructions to the user are highlighted by safety alert symbols in the manual. In addition, labels with symbols and/or instructions are attached to the product that alert you to potential hazards.

Depending on the seriousness of the hazard, the safety instructions are divided into 4 hazard categories.

#### **A DANGER**

DANGER indicates an imminently hazardous situation, which, if not avoided, will result in death or serious injury.

#### **AWARNING**

WARNING indicates a potentially hazardous situation, which, if not avoided, **can result** in death, serious injury, or equipment damage.

#### **A** CAUTION

CAUTION indicates a potentially hazardous situation, which, if not avoided, **can result** in injury or equipment damage.

#### **CAUTION**

CAUTION used without the safety alert symbol, is used to address practices not related to personal injury (e.g. **can result** in equipment damage).

### 2.4 Basic information

#### **A DANGER**

#### UNINTENDED CONSEQUENCES OF EQUIPMENT OPERATION

When the system is started, the drives are usually out of the operator's view and cannot be visually monitored.

• Only start the system if there are no persons in the hazardous area.

Failure to follow these instructions will result in death or serious injury.

#### **AWARNING**

#### LOSS OF CONTROL

- The designer of any control scheme must consider the
  potential failure modes of control paths and, for certain
  critical functions, provide a means to achieve a safe state
  during and after a path failure. Examples of critical control
  functions are emergency stop, overtravel stop, power outage and restart.
- Separate or redundant control paths must be provided for critical functions.
- System control paths may include communication links.
   Consideration must be given to the implication of unanticipated transmission delays or failures of the link.
- Observe all accident prevention regulations and local safety guidelines. 1)
- Each implementation of the product must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death or serious injury.

<sup>1)</sup> For USA: Additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems".

This page has been intentionally left blank.

## 3 MODBUS Implementation

#### 3.1 MODBUS overview

MODBUS is a communications interface developed in 1979 by PLC manufacturer Modicon, Inc. (now a brand of Schneider Electric). MODBUS is designed for multidrop networks based on a master-client architecture.

The availability of devices using MODBUS has made it a de facto standard for industrial communications network. MODBUS was originally developed for use with serial communications interfaces such as RS-232 and RS-485, MODBUS/TCP communications over TCP/IP has become a standard because of the ease of interface and simpler message format.

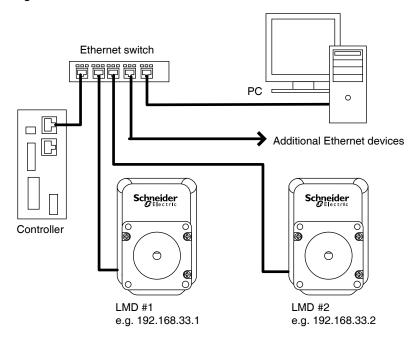



Figure 3.1: Example MODBUS network with Lexium MDrive products.

MODBUS/TCP is basically the MODBUS serial RTU encapsulated in a TCP/IP wrapper and is used for TCP/IP communications between client and server devices on an Ethernet TCP/IP network.

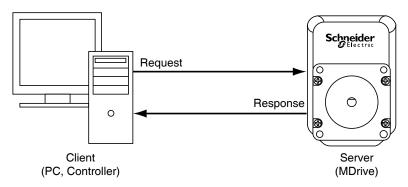
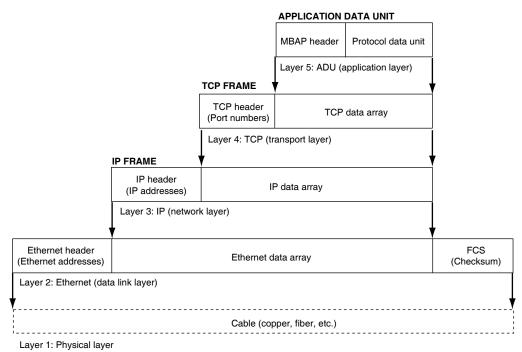
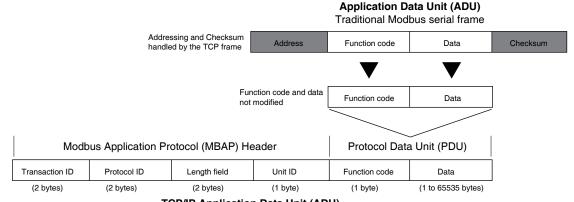



Figure 3.2: Client-server model

## 3.2 Message format

MODBUS/TCP uses the OSI (Open Systems Interconnection) networking model. The MODBUS ADU (Application Data Unit) makes up the OSI application layer and is wrapped inside the data array of the TCP/IP Ethernet data packet. Figure 3.3 below shows the construction of a TCP/IP Ethernet data packet used tor the MODBUS/TCP protocol.





Figure 3.3: Construction of an ethernet data packet for MODBUS/TCP

#### 3.2.1 ADU (application data unit)

A MODBUS/TCP data packet, or Application Data Unit (ADU) consists of two components:

- MODBUS Application Protocol (MBAP) header
- 2) Protocol Data Unit (PDU)

The information contained in the ADU is embedded in the data portion of the TCP frame.



TCP/IP Application Data Unit (ADU)
This information is embedded in the data portion of the TCP frame

Figure 3.4: MODBUS/TCP data packet construction

#### MBAP header

The MBAP header is 7 bytes long and consists of the following fields made up of four fields"

| Fields                 | Length  | Description                                                                                                                                                           |
|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transaction identifier | 2 bytes | ID of a MODBUS request/response transaction. This field is used for transaction pairing, the server will copy in the Transaction ID of the request into the response. |
| Protocol identifier    | 2 bytes | 0 = MODBUS protocol                                                                                                                                                   |
| Length                 | 2 bytes | Number of bytes following, including the Unit ID and the byte length of the PDU.                                                                                      |
| Unit identifier        | 1 byte  | ID of a remote slave. Used for intra-system communications with other buses i.e. between MODBUS/TCP and a MODBUS serial line slave through a gateway.                 |

Table 3.1 MBAP header

#### Protocol Data Unit (PDU) The PDU consists of 2 parts:

- 1) Function code: the function code identifies the action to be taken using the data bytes that will follow. These functions are covered in detail in Section 4 of this document. Basic functions are:
  - Reading inputs, writing coils (digital outputs), read/write registers and manufacturer specific configuration functions.
- 2) Data: The data contained in the PDU, it will consist of the data and/or parameters associated with the commands to operate your Lexium MDrive product.

## 4 Function codes

The Lexium MDrive supports the following function codes:

#### **Function code** dec hex Description **Device ID** 43/14 0x2B/0x0E Read device identification **Public** 02 0x02 Read digital inputs 01 0x01 Read coils (digital outputs) 05 0x05 Write single coil (digital output) 03 0x03 Read holding register 0x10 Write multiple registers Manufacturer specific 65 0x41 Read specific functions 66 0x42 Write specific functions

Table 4.1: Supported function codes

#### Exception codes

Each function has 4 error, or exception codes that will return in case of an error with the transaction. They are:

- 01 Illegal or not supported function
- 02 Illegal data address
- 03 Illegal data value
- 04 Slave device failure

#### 4.1 Device ID

### 4.1.1 Read device identification – 43/14 (0x2B/0x0E)

The device type contains information about your Lexium MDrive product, importantly the part number, serial number, and firmware version installed.

#### Request

|                     | Length | Value             |
|---------------------|--------|-------------------|
| Function code       | 1 byte | 0x2B              |
| MEI* type           | 1 byte | 0x0E              |
| Read device ID code | 1 byte | 01 / 02 / 03 / 04 |
| Object ID           | 1 byte | 0x00 – 0x06       |

<sup>\*</sup>MODBUS Encapsulated Interface

## Response

|                     | Length   | Value                               |
|---------------------|----------|-------------------------------------|
| Function code       | 1 byte   | 0x2B                                |
| MEI type            | 1 byte   | 0x0E                                |
| Read device ID code | 1 byte   |                                     |
| Conformity level    | 1 byte   |                                     |
| More follows        | 1 byte   |                                     |
| NextObjectId        | 1 byte   | 0x00                                |
| Number Of Obects    | 1 byte   | 0x06                                |
| Object Id           | 1 byte   | 0x00                                |
| Object Length       | 1 byte   | 0x03                                |
| Object Value        | 3 bytes  | "SEM USA"                           |
| Object Id           | 1 byte   | 0x01                                |
| Object Length       | 1 byte   | 0xXX                                |
| Object Value        | X bytes  | "LMDxExxx"                          |
| Object Id           | 1 byte   | 0x02                                |
| Object Length       | 1 byte   | 0x08                                |
| Object Value        | 8 bytes  | "4.0.0.0"                           |
| Object Id           | 1 byte   | 0x03                                |
| Object Length       | 1 byte   | 0x20                                |
| Object Value        | 32 bytes | "www.motion.schneider-electric.com" |
| Object Id           | 1 byte   | 0x04                                |
| Object Length       | 1 byte   | 0x0A                                |
| Object Value        | 10 bytes | Lexium MDrive Ethernet              |
| Object Id           | 1 byte   | 0x05                                |
| Object Length       | 1 byte   | 0xXX                                |
| Object Value        | X bytes  | "Serial number"                     |
| Object Id           | 1 byte   | 0x06                                |
| Object Length       | 1 byte   | 0x0C                                |
| Object Value        | 12 bytes | LMDCM X.XXX, Hw: X.X                |

## 4.2 Public function codes

## 4.2.1 Read digital inputs 02 (0x02)

Function 02 is used to read the state of the digital inputs 1 - 4 on your Lexium MDrive product. The request PDU contains the starting address of the first input specified, and the number of inputs.

In the response message the input states are packaged as 1 input per bit of the data field where status is indicated as 1 = ON and 0 = OFF. The LSB of the data byte will be the address of the input in the request.

NOTE: Digital inputs on the Lexium MDrive may also be read using the holding registers.

NOTE 2: The inputs must be configured as such using the manufacturer specific function code 66 (0x42).

#### Request

|                    | Length  | value           |
|--------------------|---------|-----------------|
| Function code      | 1 byte  | 0x02            |
| Starting Address   | 2 bytes | 0x0000 - 0x0003 |
| Quantity of inputs | 1 byte  | 1 to 4          |

#### Response

|               | Length       | Value  |  |
|---------------|--------------|--------|--|
| Function code | 1 byte       | 0x02   |  |
| Byte Count    | 1 byte       | 1 to 4 |  |
| Input status  | 1 to 4 bytes | 3      |  |

#### Error

|                          | Length | Value            |
|--------------------------|--------|------------------|
| Error code               | 1 byte | 0x82             |
| Exception                | 1 byte | 01, 02, 03 or 04 |
| Input status 1 to 4 byte |        |                  |

#### Example

Example shows a read of all 4 Lexium MDrive digital inputs, the response shows input states: I1=1, I2=1, I3=0, I4=1. Input 1 is the input address and is therefore the LSB,

| Request             |      | Response           |      |  |
|---------------------|------|--------------------|------|--|
| Function            | 0x02 | Function           | 0x02 |  |
| Starting address Hi | 0x00 | Byte count         | 0x01 |  |
| Starting address Lo | 0x2D | Input status 4 – 1 | 0x0F |  |
| Qty of inputs Hi    | 0x00 |                    |      |  |
| Qty of inputs Lo    | 0x04 |                    |      |  |

#### 4.2.2 Read coils (digital outputs) – 01 (0x01)

Function 01 is used to read the state of the digital outputs 1 - 4 on your Lexium MDrive product. The request PDU contains the starting address of the first output specified, and the number of outputs.

In the response message the output states are packaged as 1 output per bit of the data field where status is indicated as 1 = ON and 0 = OFF. The LSB of the data byte will be the output of the address in the request.

NOTE: Digital outputs on the Lexium MDrive may also be read using the holding registers.

NOTE 2: The outputs must be configured as such using the manufacturer specific function code 66 (0x42).

#### Request

|  |                     | Length  | Value  |
|--|---------------------|---------|--------|
|  | Function code       | 1 byte  | 0x01   |
|  | Starting Address    | 2 bytes | 0x0000 |
|  | Quantity of outputs | 1 byte  | 1 to 4 |

#### Response

|               | Lengui       | value  |
|---------------|--------------|--------|
| Function code | 1 byte       | 0x01   |
| Byte Count    | 1 byte       | 1 to 4 |
| Input status  | 1 to 4 bytes |        |

Value

Length

#### Error

|              | Length       | Value            |
|--------------|--------------|------------------|
| Error code   | 1 byte       | 0x81             |
| Exception    | 1 byte       | 01, 02, 03 or 04 |
| Input status | 1 to 4 bytes |                  |

#### Example

Example shows a read of all 4 Lexium MDrive digital outputs, the response shows outputs states: O1=1, O2=0, O3=1, O4=0. Output 1 is the output address and is therefore the LSB,

| Request             |      | Response            |      |
|---------------------|------|---------------------|------|
| Function            | 0x01 | Function            | 0x02 |
| Starting address Hi | 0x00 | Byte count          | 0x01 |
| Starting address Lo | 0x00 | Output status 4 – 1 | 0x00 |
| Qty of outputs Hi   | 0x00 |                     |      |
| Qty of outputs Lo   | 0x04 |                     |      |

## 4.2.3 Write single coil (digital output) – 05 (0x05)

This function is used to turn a single output point ON or OFF.

The state is specified by a constant in the request data field:

- 0xFF00 turns the output ON
- 0x0000 turns the output OFF

All other values are illegal and will return an exception code 03: Illegal data value.

NOTE: Digital outputs on the Lexium MDrive may also be written using the holding registers.

NOTE 2: The outputs must be configured as such using the manufacturer specific function code 66 (0x42).

#### Request

|                | Length  | Value            |
|----------------|---------|------------------|
| Function code  | 1 byte  | 0x05             |
| Output address | 2 bytes | 0x0000 – 0x0003  |
| Output value   | 2 bytes | 0x0000 or 0xFF00 |

#### Response

|                | Length  | Value            |
|----------------|---------|------------------|
| Function code  | 1 byte  | 0x05             |
| Output address | 2 bytes | 0x0000 – 0x0003  |
| Output value   | 2 bytes | 0x0000 or 0xFF00 |

#### Error

|            | Length | Value            |
|------------|--------|------------------|
| Error code | 1 byte | 0x85             |
| Exception  | 1 byte | 01, 02, 03 or 04 |

#### Example

Example shows setting output 3 to an ON state.

| Request           |      | Response          |      |
|-------------------|------|-------------------|------|
| Function          | 0x05 | Function          | 0x05 |
| Output address Hi | 0x00 | Output address Hi | 0x00 |
| Output address Lo | 0x00 | Output address Lo | 0x00 |
| Output value Hi   | 0xFF | Output value Hi   | 0xFF |
| Output value Lo   | 0x00 | Output value Lo   | 0x00 |

#### 4.2.4 Read holding registers – 03 (0x03)

Tis function code is used to read a contingous block of holding registers in your Lexium MDrive. The request PDU specifies the starting register address and the number of registers.

Lexium MDrive command data mapped to the holding registers measure 1, 2 or 4 bytes in length, therefore you will not need to read more than two consecutive registers per request.

NOTE: A number of registers are marked as reserved. Use of any of these registers will return a exception code 02: illegal data address.

See Section 5 of this document for the register map.

#### Request

|                  | Length  | Value            |
|------------------|---------|------------------|
| Function code    | 1 byte  | 0x03             |
| Starting address | 2 bytes | 0x0000 – 0x00B7* |
| Each address     | 2 bytes | 1 to 2           |

<sup>\*</sup>A number of addresses in this block are reserved for future use and will return an error.

#### Response

|                | Length  | Value        |
|----------------|---------|--------------|
| Function code  | 1 byte  | 0x03         |
| Byte count     | 2 bytes | 1 – 4        |
| Register value | 2 bytes | 0x00 to 0x04 |

#### Error

|            | Length | Value            |
|------------|--------|------------------|
| Error code | 1 byte | 0x83             |
| Exception  | 1 byte | 01, 02, 03 or 04 |

#### Example

Example shows reading registers 0x008A and 0x008B (maximum velocity). The value reads as 0x00 0B B8 00 or decimal 768000 steps/second.

| Request             |      | Response          |      |
|---------------------|------|-------------------|------|
| Function            | 0x03 | Function          | 0x0F |
| Starting address Hi | 0x00 | Byte count        | 0x04 |
| Starting address Lo | 0x8B | Register value Hi | 0xB8 |
| Qty of registers Hi | 0x00 | Register value Lo | 0x00 |
| Qty of registers Lo | 0x02 | Register value Hi | 0xB8 |
|                     |      | Register value Lo | 0x0B |

#### 4.2.5 Write multiple registers – 16 (0x10)

Tis function code is used to write a contingous block of registers in your Lexium MDrive. The request PDU specifies the starting register address and the number of registers teo be written.

Lexium MDrive command data mapped to the registers measure 1, 2 or 4 bytes in length, therefore you will not need to write more than two consecutive registers per request.

NOTE: A number of registers are marked as reserved. Use of any of these registers will return a exception code 02: illegal data address.

See Section 5 of this document for the register map.

#### Request

|                  | Length     | Value            |
|------------------|------------|------------------|
| Function code    | 1 byte     | 0x10             |
| Starting address | 2 bytes    | 0x0000 – 0x00B7* |
| Each address     | 2 bytes    | 1 to 2           |
| Qty of addresses | 1 byte     | 2 or 4           |
| Registers value  | to 4 bytes | value            |

<sup>\*</sup>A number of addresses in this block are reserved for future use and will return an error.

#### Response

|                  | Length  | Value            |
|------------------|---------|------------------|
| Function code    | 1 byte  | 0x10             |
| Starting address | 2 bytes | 0x0000 – 0x00B7* |
| Qty of registers | 2 bytes | 0x0001 to 0x0002 |

#### Error

|            | Length | Value            |
|------------|--------|------------------|
| Error code | 1 byte | 0x90             |
| Exception  | 1 byte | 01, 02, 03 or 04 |

#### Example

Example shows writing registers 0x008A and 0x008B (maximum velocity). The value will be set as decimal 600000 steps/second, or 0x00 09 27 C0.

| Request             |      | Response             |      |  |  |  |  |
|---------------------|------|----------------------|------|--|--|--|--|
| Function            | 0x10 | Function             | 0x10 |  |  |  |  |
| Starting address Hi | 0x00 | Starting address Hi  | 0x00 |  |  |  |  |
| Starting address Lo | 0x8A | Starting address Lo  | 0x8A |  |  |  |  |
| Qty of registers Hi | 0x00 | Qty of registers Hi  | 0x00 |  |  |  |  |
| Qty of registers Lo | 0x8B | Qty of register s Lo | 0x8B |  |  |  |  |
| Byte count          | 0x04 |                      |      |  |  |  |  |
| Registers value Hi  | 0x27 |                      |      |  |  |  |  |
| Registers value Lo  | 0xC0 |                      |      |  |  |  |  |
| Registers value Hi  | 0x00 |                      |      |  |  |  |  |
| Registers value Lo  | 0x09 |                      |      |  |  |  |  |

## 4.3 Manufacturer specific function codes

The device supports two manufacturer specific function codes:

- 65 (0x41) Read specific functions
- 66 (0x42) Write specific functions

#### Manufaturer functions

| Function                       | R/W | Function             | R/W |
|--------------------------------|-----|----------------------|-----|
| Setup input points 1 – 4       | R/W | End program (E)      | WO  |
| Setup output points 1 – 3      | R/W | Execute program (EX) | WO  |
| Setup Analog input             | R/W | Pause program (RS)   | WO  |
| Trip on Relative Position (TR) | R/W | Resume program (RS)  | WO  |
| Make Up mode (MU)              | R/W |                      |     |

## 4.3.1 Manufacturer specific commands using 65 (0x41) and 66 (0x42)

#### Input setup

The ASCII of the command mnemonic is sent in reverse order in the request PDU i.e. SI, SO etc. The parameter string is written or read in normal sequence.

| Function       |             |           | 65 (0x41) Read Mfg Spc, 66 (0x42) Write Mfg Spc |     |    |    |    |  |  |
|----------------|-------------|-----------|-------------------------------------------------|-----|----|----|----|--|--|
| MCode mnemonic |             | ls (l     | Is (Input setup)                                |     |    |    |    |  |  |
| N 4            | Hi word     | 0x2       | 0x20 0x20                                       |     |    |    |    |  |  |
| Mnemonic       | Lo word     | 0x53 0x49 |                                                 |     |    |    |    |  |  |
| Parameter of   | lata length | 6 –       | 7 by                                            | tes |    |    |    |  |  |
| Parameter      | Params      |           | Α                                               |     | В  |    | С  |  |  |
| string         | ASCII       | =         | 0                                               | ,   | 0  | ,  | 0  |  |  |
| example        | Hex         | 3D        | 30                                              | 2C  | 30 | 2C | 30 |  |  |

#### **Parameters**

| A - Lin | e number | B- I/0 | O type   |                 | C-A | ctive H | li/Lo     |
|---------|----------|--------|----------|-----------------|-----|---------|-----------|
| Input   |          | Input  | function | ıs              |     |         |           |
| dec     | hex      | dec    | hex      | function        | dec | hex     |           |
| 1       | 31       | 0      | 30       | General purpose | 0   | 30      | Active Lo |
| 2       | 32       | 1      | 31       | Homing          | 1   | 31      | Active Hi |
| 3       | 33       | 2      | 32       | Limit +         |     |         |           |
| 4       | 34       | 3      | 33       | Limit –         |     |         |           |
|         | •        | 5      | 35       | Soft stop       |     |         |           |
|         |          | 7      | 37       | Jog +           |     |         |           |
|         |          | 8      | 38       | Jog –           |     |         |           |
|         |          | 11     | 31 31    | Reset           |     |         |           |
|         |          | 12     | 31 32    | Capture input   |     |         |           |

#### Output setup

The ASCII of the command mnemonic is sent in revers order in the request PDU i.e. SO etc. The parameter string is written or read in normal sequence.

| Function          |             |           | 65 (0x41) Read Mfg Spc, 66 (0x42) Write Mfg Spc |    |    |    |    |  |  |
|-------------------|-------------|-----------|-------------------------------------------------|----|----|----|----|--|--|
| MCode mnemonic    |             | Os(       | Os(Output setup)                                |    |    |    |    |  |  |
| N4                | Hi word     | 0x20      | 0x20 0x20                                       |    |    |    |    |  |  |
| Mnemonic          | Lo word     | 0x53 0x4F |                                                 |    |    |    |    |  |  |
| Parameter of      | data length | 6 –       | 7 byt                                           | es |    |    |    |  |  |
| Parameter         | Params      |           | Α                                               |    | В  |    | С  |  |  |
| string<br>example | ASCII       | =         | 0                                               | ,  | 0  | ,  | 0  |  |  |
|                   | Hex         | 3D        | 30                                              | 2C | 30 | 2C | 30 |  |  |

#### **Parameters**

24

25

26

27

28

29

32 34

32 35

32 36

32 37

32 38

32 39

| A - Line | number | B- I/ | O type    |                    | C – A | C - Active Hi/Lo |           |  |
|----------|--------|-------|-----------|--------------------|-------|------------------|-----------|--|
| Output   |        | Outp  | ut Functi | ions               |       |                  |           |  |
| 1        | 31     | 16    | 31 36     | General purpose    | dec   | hex              |           |  |
| 2        | 32     | 17    | 31 37     | Moving             | 0     | 30               | Active Lo |  |
| 3        | 33     | 18    | 31 38     | Fault              | 1     | 31               | Active Hi |  |
|          | ·      | 20    | 32 30     | Velocity changing  |       |                  |           |  |
|          |        | 21    | 32 31     | Locked rotor       |       |                  |           |  |
|          |        | 23    | 32 33     | Moving to position |       |                  |           |  |

hMTechnology circuitry

Make-up active

Encoder channel A

Encoder channel B

Trip (Output 3 only)

Attention

## Analog input setup

The ASCII of the command mnemonic is sent in revers order in the request PDU i.e. SI. The parameter string is written or read in normal sequence.

The analog input may be configured for voltage or current mode with ranges of 0 to 5 VDC, 0 to 10 VDC, o to 20 mA or 4 to 20 mA.

| Function          | 65 (0x41) Read Mfg Spc, 66 (0x42) Write Mfg Spc |       |                   |     |    |    |    |                                        |  |  |
|-------------------|-------------------------------------------------|-------|-------------------|-----|----|----|----|----------------------------------------|--|--|
| MCode mnemonic    |                                                 | Is (A | Is (Analog Input) |     |    |    |    |                                        |  |  |
| N4                | Hi word                                         | 0x2   | 0 0x2             | :0  |    |    |    |                                        |  |  |
| Mnemonic          | Lo word                                         | 0x5   | 0x53 0x49         |     |    |    |    |                                        |  |  |
| Parameter of      | data length                                     | 4 –   | 5 by              | tes |    |    |    |                                        |  |  |
| Parameter         | Params                                          |       | Α                 |     | В  |    | С  |                                        |  |  |
| string<br>example | ASCII                                           | =     | 5                 | ,   | 9  | ,  | 0  | See parameters table below for details |  |  |
|                   | Hex                                             | 3D    | 35                | 2C  | 39 | 2C | 30 | - Doioti for details                   |  |  |

#### **Parameters**

| A – Input mode |          |            | B-I | B – Input range |            |  |  |  |
|----------------|----------|------------|-----|-----------------|------------|--|--|--|
| dec            | hex      | mode       | dec | hex             | range      |  |  |  |
| ^              | 00       | Voltage    | 0   | 30              | 0 – 5 VDC  |  |  |  |
| 9              | 39       |            | 1   | 31              | 0 – 10 VDC |  |  |  |
| 40             | 10 31 30 | 30 Current | 0   | 30              | 0 – 20 mA  |  |  |  |
| 10             |          |            | 1   | 31              | 4 – 20 mA  |  |  |  |

#### Trip on relative position

The ASCII of the command mnemonic is sent in revers order in the request PDU i.e. RT. The parameter string is written or read in normal sequence.

Note the the only trip function available is trip on relative position. to re-enable the trip, use register 0x007D.

| Function       | 65 (0       | 65 (0x41) Read Mfg Spc, 66 (0x42) Write Mfg Spc |                                |    |    |    |    |  |  |  |  |
|----------------|-------------|-------------------------------------------------|--------------------------------|----|----|----|----|--|--|--|--|
| MCode mnemonic |             | TR (                                            | TR (Trip on relative position) |    |    |    |    |  |  |  |  |
| Managania      | Hi word     | 0x20                                            | 0x20 0x20                      |    |    |    |    |  |  |  |  |
| Mnemonic       | Lo word     | 0x52 0x54                                       |                                |    |    |    |    |  |  |  |  |
| Parameter (    | data length | Up to 11 bytes                                  |                                |    |    |    |    |  |  |  |  |
|                | ASCII       | =                                               | 6                              | 5  | 0  | 0  | 0  |  |  |  |  |
|                | Hex         | 3D                                              | 36                             | 35 | 30 | 30 | 30 |  |  |  |  |

#### **End** Stops the execution of a program.

| Function              |         | 65 (0x41) Read Mfg Spc     |
|-----------------------|---------|----------------------------|
| MCode mne             | monic   | E (Stop program execution) |
| Mnemonic              | Hi word | 0x20 0x20                  |
| winemonic .           | Lo word | 0x20 0x45                  |
| Parameter data length |         | 0 bytes                    |

#### Execute program

Executes the address or label of a stored MCode/TCP program.



#### NOTE: The program resident CANNOT have any print statements in the code.

User variables that need to be read over MODBUS/TCP during program execution must be read using Registers R1 - R4 and V1 - V8 using the associated register (See Section 5: Register Map). If using V1 - V8, they must be declared within the program using the VA (Create user variable) MCode command.

The example below shows the programmed labeled A3 being executed.

| Function              |         | 66 (0x42) Write Mfg Spc |  |  |  |
|-----------------------|---------|-------------------------|--|--|--|
| MCode mnemonic        |         | EX (Execute program)    |  |  |  |
| Hi word               |         | 0x20 0x20               |  |  |  |
| Mnemonic              | Lo word | 0x58 0x454              |  |  |  |
| Parameter data length |         | Up to 4 bytes           |  |  |  |
|                       | ASCII   | A 3                     |  |  |  |
|                       | Hex     | 41 33                   |  |  |  |

#### Pause program

Pauses a running MCode/TCP program.

| Function              |         | 66 (0x42) Write Mfg Spc |
|-----------------------|---------|-------------------------|
| MCode mnemonic        |         | PS (Pause program)      |
| N.4                   | Hi word | 0x20 0x20               |
| Mnemonic              | Lo word | 0x53 0x50               |
| Parameter data length |         | 0 bytes                 |

#### Resume program

Resumes a paused MCode/TCP program.

| Function              |         | 66 (0x42) Write Mfg Spc |  |
|-----------------------|---------|-------------------------|--|
| MCode mnemonic        |         | RS (Resume program)     |  |
| Mnemonic              | Hi word | 0x20 0x20               |  |
| WITHEITHOFFIC         | Lo word | 0x53 0x52               |  |
| Parameter data length |         | 0 bytes                 |  |

## Make up mode (hMTechnology only)

Sets the mode for hMTechnology make up steps

| Function       |                       | 66 (0x42) Write Mfg Spc |           |      |      |              |                                        |
|----------------|-----------------------|-------------------------|-----------|------|------|--------------|----------------------------------------|
| MCode mnemonic |                       | MU                      | (Mak      | e up | mode | <del>)</del> |                                        |
| Managaria      | Hi word               | 0x2                     | 0 0x2     | 20   |      |              |                                        |
| Mnemonic       | Lo word               | 0x5                     | 0x55 0x4D |      |      |              |                                        |
| Parameter of   | Parameter data length |                         | ytes      |      |      |              |                                        |
| Parameter      | Params                |                         | Α         |      | В    |              |                                        |
| string         | ASCII                 | =                       | 2         | ,    | 0    |              | See parameters table below for details |
| example        | Hex                   | 3D                      | 32        | 2C   | 30   |              | - Soloti for dotallo                   |

#### **Parameters**

| A – N | A – Make up mode |                       |     | B – Parameter |                |  |
|-------|------------------|-----------------------|-----|---------------|----------------|--|
| dec   | hex              | mode                  | dec | hex           | range          |  |
| 0     | 30               | Off                   | 0   | 30            | Use lead/lag   |  |
| 1     | 31               | Use make up frequency | 1   | 31            | Clear lead/lag |  |
| 2     | 32               | Use system speed      |     |               |                |  |

## 4.3.2 Read manufacturer specific – 65 (0x41)

#### Request

|                  | Length  | Value                         |
|------------------|---------|-------------------------------|
| Function code    | 1 byte  | 0x41                          |
| Mnemonic Hi word | 2 bytes | 0x2020 0x2020/2033*           |
| Mnemonic Lo word | 2 bytes | See section 4.3.1 for listing |

<sup>\*</sup>For capture/trip I/O point.

#### Response

|               | Length  | value                                |
|---------------|---------|--------------------------------------|
| Function code | 1 byte  | 0x41                                 |
| Byte count    | 2 bytes | N* (quantity of characters returned) |
| Response      | n bytes | n=N or N+1                           |

#### Error

|            | Length | Value            |
|------------|--------|------------------|
| Error code | 1 byte | 0xC1             |
| Exception  | 1 byte | 01, 02, 03 or 04 |

#### Example

Example shows reading the setting of the trip on relative input (TR).

| Request           |      | Response   |      |
|-------------------|------|------------|------|
| Function          | 0x41 | Function   | 0x41 |
| Mnemonic Hi word  | 0x20 | Byte count | 0x07 |
| Milemonic Hi word | 0x20 |            | 0x30 |
| Mnemonic Lo word  | 0x52 |            | 0x2C |
| Milemonic Lo word | 0x54 |            | 0x20 |
|                   |      | Response   | 0x30 |
|                   |      |            | 0x2C |
|                   |      |            | 0x20 |
|                   |      |            | 0x30 |

## 4.3.3 Write manufacturer specific – 66 (0x42)

#### Request

|                     | Length     | Value                         |  |
|---------------------|------------|-------------------------------|--|
| Function code       | 1 byte     | 0x42                          |  |
| Mnemonic Hi word    | 2 bytes    | 0x2020 0x2020/2033*           |  |
| Mnemonic Lo word    | 2 bytes    | See section 4.3.1 for listing |  |
| Byte count          | 1 byte     | 1-n bytes (28 max)            |  |
| Parameter data stri | ng n bytes | See section 4.3.1 for listing |  |

<sup>\*</sup>For capture/trip I/O point.

#### Response

|                    | Length  | Value                                |
|--------------------|---------|--------------------------------------|
| Function code      | 1 byte  | 0x42                                 |
| Byte count written | 1 bytes | N* (quantity of characters returned) |
| Mnemonic Hi word   | 2 bytes | 0x2020 0x2020/2033*                  |
| Mnemonic Lo word   | 2 bytes | See section 4.3.1 for listing        |

#### Error

|            | Length | Value            |
|------------|--------|------------------|
| Error code | 1 byte | 0xC2             |
| Exception  | 1 byte | 01, 02, 03 or 04 |

#### Example

Example shows setting input 1 (S1). The input is shown set to a general purpose sinking input which is active when Hi, or S1=0,1,0. Note that the data string includes all of the characters, including the equal sign and the commas.

| Request          |      | Response           |      |
|------------------|------|--------------------|------|
| Function         | 0x41 | Function           | 0x41 |
| Mnemonic Hi word | 0x20 | Bytes written      | 0x04 |
|                  | 0x20 | - Mnemonic Hi word | 0x20 |
| Mnemonic Lo word | 0x31 | winemonic Hi word  | 0x20 |
|                  | 0x53 | Manageria          | 0x31 |
| Byte count       | 0x06 | Mnemonic Lo word   | 0x53 |
|                  | 0x3D |                    |      |
|                  | 0x30 |                    |      |
| Parameter data   | 0x2C |                    |      |
| string           | 0x31 |                    |      |
|                  | 0x2C |                    |      |
|                  | 0x30 |                    |      |

Page intentionally left blank

# 5 Register map

| Function              | Address            | Bytes | Description                                                                                                                                                                              | Range                         | Default | MCode |
|-----------------------|--------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|-------|
| Acceleration          | 0x0000 -<br>0x0001 | 4     | Sets the acceleration rate in steps per second <sup>2</sup> .                                                                                                                            | 91 to 1525878997              | 1000000 | Α     |
| Reserved              | 0x0002-3           | _     | Reserved                                                                                                                                                                                 | _                             | _       | _     |
| Busy                  | 0x0004             | 1     | MCode program executing                                                                                                                                                                  | _                             | _       | BY    |
| Counter 1             | 0x0005 -<br>0x0006 | 4     | Variable contains the count of clock pulses generated by the device.                                                                                                                     | -2147483648 to<br>+2147483647 | 0       | C1    |
| Counter 2             | 0x0007 -<br>0x0008 | 4     | Variable contains the count of encoder counts read by the device. (Closed loop only)                                                                                                     | -2147483648 to<br>+2147483647 | 0       | C2    |
| Software reset enable | 0x0009             | 1     | Flag configures the device to respond (1) or not respond (0) to a CTRL+C software reset.                                                                                                 | 0/1                           | 1       | CE    |
| Reserved              | 0x000A-E           | _     | Reserved                                                                                                                                                                                 | _                             | _       | _     |
| Input 1 debounce      | 0x000F             | 1     | Sets digital filtering in milliseconds. Input must                                                                                                                                       | 0 – 255                       | 0       | D1    |
| Input 2 debounce      | 0x0010             | -     | be stable for the set time before state change is                                                                                                                                        |                               |         | D2    |
| Input 3 debounce      | 0x0011             | -     | detected.                                                                                                                                                                                |                               |         | D3    |
| Input 4 debounce      | 0x0012             | -     |                                                                                                                                                                                          |                               |         | D4    |
| Analog input filter   | 0x0013             | 1     | Filter does continuos average by computing: (((X-1)/X)*current reading) + (1 / X) If X = 10, then: ((current averaged value * 9)/10) + (new reading / 10) == NEW current averaged value. | 0 – 255                       | 0       | D5    |
| Reserved              | 0x0014-17          | _     | Reserved                                                                                                                                                                                 | _                             | _       | _     |
| Deceleration          | 0x0018 -<br>0x0019 | 4     | Sets deceleration rate in steps per second <sup>2</sup> .                                                                                                                                | 91 – 1525878997               | 1000000 | D     |
| Deadband <sup>1</sup> | 0x001A             | 2     | Encoder deadband (Closed loop only)                                                                                                                                                      | 0 to ±65000                   | 10      | DB    |
| Decrement variable    | 0x001B             | 1     | instruction will decrement the specified variable by one.                                                                                                                                | _                             | _       | DC    |
| Drive enable          | 0x001C             | 1     | Flag enables (1) or disables (0) the drive portion of the device.                                                                                                                        | 0/1                           | 1       | DE    |
| Reserved              | 0x001D             | _     | Reserved                                                                                                                                                                                 | _                             | _       | _     |
| Encode enable         | 0x001E             | 1     | Enable encoder functions (Closed loop only)                                                                                                                                              | 0/1                           | 0       | EE    |
| Error flag            | 0x001F             | 1     | Flag indicates whether an error condition exists (1) or not (0).                                                                                                                         | 0/1                           | 0       | EF    |
| Reserved              | 0x0020             | _     | Reserved                                                                                                                                                                                 | _                             | _       | _     |
| Error                 | 0x0021             | 2     | Variable holds the error code of the last error. must be read or set to 0 to clear.                                                                                                      | _                             | 0       | ER    |
| Reserved              | 0x0022             | _     | Reserved                                                                                                                                                                                 | _                             | -       |       |
| Filter capture        | 0x0024             | 1     | Sets the digital filtering to be applied to Input 1 when configured as a Capture input                                                                                                   | 0 to 9                        | 0       | FC    |
| Reserved              | 0x0025             | _     | Reserved                                                                                                                                                                                 | _                             | _       | _     |
| Filter Motion         | 0x0026             | 1     | Digital filtering                                                                                                                                                                        | 0 to 9                        | 0       | FM    |
| Reserved              | 0x0027-28          | _     | Reserved                                                                                                                                                                                 | _                             | -       |       |
| Holding current       | 0x0029             | 1     | Sets the motor holding current in percent (%)                                                                                                                                            | 0 to 100                      | 5       | НС    |
| Home to Index         | 0x002A             | 1     | Home to i encoder index mark mode                                                                                                                                                        | 1 to 4                        | _       | HI    |

| Function                     | Address            | Bytes | Description                                                                                                                                                                                                                                         | Range                                                                                                                                                 | Default                                  | MCode |  |  |
|------------------------------|--------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------|--|--|
| Microstep resolution         | 0x0048             | 1     | Set the microstep resolution in microsteps per motor full step.                                                                                                                                                                                     | See table                                                                                                                                             | 256                                      | MS    |  |  |
|                              |                    |       | Available Microsteps Per Revolution                                                                                                                                                                                                                 | 16         25         32           3200         5000         6400           256         180         108           51200         36000¹         21600² | 50<br>10000<br>127<br>25400 <sup>3</sup> |       |  |  |
| Motor settling delay time    | 0x0049             | 2     | Specifies the motor settling delay time in milliseconds. This allows the motor to settle following a move. This variable is added to 0x002C to determine the total time before shifting to holding current. The sum cannot be more than 65535 msec. | 0 – 65000                                                                                                                                             | 0                                        | MT    |  |  |
| Moving                       | 0x004A             | 1     | Indicates whether the axis is in motion (1) or stationary (0).                                                                                                                                                                                      | , ,                                                                                                                                                   |                                          |       |  |  |
| Write output 1               | 0x004B             | 1     | Write (set) the logic state of the specified output.                                                                                                                                                                                                | 0/1                                                                                                                                                   | _                                        | 01    |  |  |
| Write output 2               | 0x004C             | _     |                                                                                                                                                                                                                                                     |                                                                                                                                                       |                                          | O2    |  |  |
| Write output 3               | 0x004D             | _     |                                                                                                                                                                                                                                                     |                                                                                                                                                       |                                          | О3    |  |  |
| Output fault                 | 0x004E             | 1     | Output fault flag indicates a faulted state of an output when true.                                                                                                                                                                                 | OF                                                                                                                                                    |                                          |       |  |  |
| Reserved                     | 0x004F-55          | _     | Reserved                                                                                                                                                                                                                                            | _                                                                                                                                                     | _                                        | _     |  |  |
| Set outputs 1 - 4 as a group | 0x0056             | 1     | Set outputs 1-4 as one 4 bit binary value. The value is entered in decimal, with a range of 0-15 in binary where output 1 will be the LSb                                                                                                           | 0 – 15                                                                                                                                                | _                                        | ОТ    |  |  |
| Position counter             | 0x0057 -<br>0x0058 | 4     | Sets or reads the axis ± position in motor steps.  The value of the register will be used as the reference point for absolute and relative moves.                                                                                                   | -2147483648 –<br>+2147483647                                                                                                                          | 0                                        | Р     |  |  |
| Position capture at trip     | 0x0059 -<br>0x005A | 4     | Captures axis position during a trip event. Activation will occur upon any trip function EXCEPT a position trip.                                                                                                                                    | _                                                                                                                                                     | _                                        | PC    |  |  |
| Reserved                     | 0x005B             | _     | Reserved                                                                                                                                                                                                                                            | _                                                                                                                                                     | _                                        | _     |  |  |
| Position maintenance         | 0x005C             | 1     | Enables (1) or disables (0) position maintenance functions (Closed loop only)                                                                                                                                                                       | 0/1                                                                                                                                                   | 0                                        | PM    |  |  |
| Reserved                     | 0x005D-5E          | _     | Reserved                                                                                                                                                                                                                                            | _                                                                                                                                                     | _                                        | _     |  |  |
| User register 1              | 0x005F -<br>0x0060 | 4     | registers may contain up to 11 digits including the sign and may be used to store and retrieve                                                                                                                                                      | 32 bit                                                                                                                                                | _                                        | R1    |  |  |
| User register 2              | 0x0061 -<br>0x0062 | =     | data.                                                                                                                                                                                                                                               |                                                                                                                                                       |                                          | R2    |  |  |
| User register 3              | 0x0063 -<br>0x0064 | -     |                                                                                                                                                                                                                                                     |                                                                                                                                                       |                                          | R3    |  |  |
| User register 4              | 0x0065 -<br>0x0066 | -     |                                                                                                                                                                                                                                                     |                                                                                                                                                       |                                          | R4    |  |  |
| Run current                  | 0x0067             | 1     | Sets the motor run current in percent (%).                                                                                                                                                                                                          | 1 to 100                                                                                                                                              | 25                                       | RC    |  |  |
| Reserved                     | 0x0068-75          | _     | Reserved                                                                                                                                                                                                                                            | _                                                                                                                                                     | _                                        | _     |  |  |

| Function                | Address            | Bytes | Description                                                                                                                                                                                                    | Range                          | Default | MCode |
|-------------------------|--------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------|-------|
| Save                    | 0x0076             | 1     | Saves variables and flags in working memory to NVM.                                                                                                                                                            |                                | _       | S     |
| Stall factor            | 0x0077             | 2     | Difference between commanded position and encoder counts at which a stall is indicated (Closed loop only).                                                                                                     | 0 to 65000                     | 15      | SF    |
| Slew axis               | 0x0078 -<br>0x0079 | 4     | Slews the axis at velocity in steps/second in the specified ± direction, Slew velocity is independent of 0x008B (maximum velocity).                                                                            | ±5000000                       | _       | SL    |
| Stall mode              | 0x007A             | 1     | Stall detection mode determines the response to a stall detect, either motion stops (0) or attempts to continue (1) (Closed loop only).                                                                        | 0/1                            | 0       | SM    |
| Stall flag              | 0x007B             | 1     | indicates a motor stall (1) or not stalled (0) (Closed loop only).                                                                                                                                             | 0/1                            | 0       | ST    |
| Reserved                | 0x007C             | _     | Reserved                                                                                                                                                                                                       | _                              | _       | _     |
| Trip enable             | 0x007D             | 1     | Enables/re-enables trip functions as specified by the table below. Multiple trips may be specified by adding the trip definitions i.e. 0x007D=10 will allow trip on position (2) and trip on time (8).         | 0 – 43                         | 0       | TE    |
|                         |                    |       | Trips are set up using manufacturer function codes 65 (0x41) and 66 (0x42)                                                                                                                                     |                                |         |       |
|                         |                    |       | Trip enable definitions:                                                                                                                                                                                       |                                |         |       |
|                         |                    |       | 0 – Trip functions disabled.                                                                                                                                                                                   |                                |         |       |
|                         |                    |       | 1 – Reserved                                                                                                                                                                                                   |                                |         |       |
|                         |                    |       | 2 – Reserved                                                                                                                                                                                                   |                                |         |       |
|                         |                    |       | 4 – Reserved                                                                                                                                                                                                   |                                |         |       |
|                         |                    |       | 8 – Reserved                                                                                                                                                                                                   |                                |         |       |
|                         |                    |       | 16 – Trip on relative position                                                                                                                                                                                 |                                |         |       |
|                         |                    |       | 32 – Reserved                                                                                                                                                                                                  |                                |         |       |
| Reserved                | 0x007E-84          | _     | Reserved                                                                                                                                                                                                       | _                              | _       | _     |
| Read axis velocity      | 0x0085 -<br>0x0086 | 4     | Reads the current velocity in motor steps per second.                                                                                                                                                          | _                              | _       | V     |
|                         |                    |       | NOTE: If hMTechnology circuitry is in make-up mode, 0x0085-86 will not return an accurate value. When the hMTechnology product is in torque control mode 0x0085-86 will return a zero (0). Read only variable. |                                |         |       |
| Reserved                | 0x0087             |       | Reserved                                                                                                                                                                                                       | _                              |         |       |
| Velocity is changing    | 0x0088             | 1     | Axis velocity is changing (1) or constant (0). Read only status flag.                                                                                                                                          | 0/1                            | 0       | VC    |
| Set initial velocity    | 0x0089 -<br>0x008A | 4     | Set the initial velocity of the axis in motor steps per second.                                                                                                                                                | 1 to max. velocity - 1         | 1000    | VI    |
| Set maximum<br>velocity | 0x008B -<br>0x008C | 4     | Set the maximum velocity of the axis in motor steps per second.                                                                                                                                                | Initial velocity +1 to 5000000 | 768000  | VM    |
| Warning temp            | 0x008D             | _     | Sets the temperature at which a warning error is asserted/                                                                                                                                                     | 0 to 84                        | 80      | WT    |

# 5.1 hMTechnology specific registers

| Function                 | Address | Bytes | Description                                                                                                                                                                 | Range   | Default | MCode |
|--------------------------|---------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-------|
| Set hMTechnology mode    | 0x008E  | 1     | Sets the hMTechnology operational behavior to one of four modes, detailed below:                                                                                            | 0 – 3   | 2       | AS    |
|                          |         |       | 0 hMTechnology circuity disabled.                                                                                                                                           |         |         |       |
|                          |         |       | Fixed current mode. Current is<br>set by the run and hold current<br>commands, Speed is set by the<br>system speed command.                                                 |         |         |       |
|                          |         |       | Variable current mode. Current will<br>vary as needed to position the load<br>with the maximum current set by<br>the run current command.                                   |         |         |       |
|                          |         |       | Torque mode, torque and speed will vary as needed to move/ position the load with the maximum torque % and speed as specified by the torque and torque-speed commands.      |         |         |       |
| Read hMTechnology status | 0x008F  | 1     | Read only status flag will return the conditions listed below, If multiple conditions exist the result is additive. i.e. At zero (64) and Calibration complete (128) AF=192 | 1 – 255 | _       | AF    |
|                          |         |       | 1 – Rotor lead limit reached.                                                                                                                                               |         |         |       |
|                          |         |       | 2 – Rotor lag limit reached.                                                                                                                                                |         |         |       |
|                          |         |       | 4 – Maximum lead/lag limit reached.                                                                                                                                         |         |         |       |
|                          |         |       | 8 - Locked rotor.                                                                                                                                                           |         |         |       |
|                          |         |       | 16 – hMTechnology mode is active.                                                                                                                                           |         |         |       |
|                          |         |       | 32 – Hardware fault condition exists.                                                                                                                                       |         |         |       |
|                          |         |       | 64 – At zero (0).                                                                                                                                                           |         |         |       |
|                          |         |       | 128 – Calibration s complete.                                                                                                                                               |         |         |       |
| Reserved                 | 0x0090  | _     | _                                                                                                                                                                           | _       | _       | _     |

| Function                 | Address            | Bytes | Description                                                                                                                                                                                         | Range                         | Default | MCode |
|--------------------------|--------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------|-------|
| Set control bounds       | 0x0091             | 1     | The control bounds are limits which configure the hMTechnology circuitry for best speed or torque performance. For torque mode operation the control bounds are preset for best torque performance. | 0 – 3                         | 1       | СВ    |
|                          |                    |       | 0 – 1.1 full steps (best torque performance).                                                                                                                                                       |                               |         |       |
|                          |                    |       | 1 – 1.3 full steps (best overall performance).                                                                                                                                                      |                               |         |       |
|                          |                    |       | 2 – 1.5 full steps (best overall performance).                                                                                                                                                      |                               |         |       |
|                          |                    |       | 3 – 1.7 full steps (best speed performance).                                                                                                                                                        |                               |         |       |
| Reserved                 | 0x0092             | _     | _                                                                                                                                                                                                   | _                             | _       | _     |
| Clear locked rotor       | 0x0093             | 1     | Will clear a locked rotor fault, re-enable the output bridge and initiate a timed calibration.                                                                                                      | _                             | _       | CF    |
| Reserved                 | 0x0094             | _     | _                                                                                                                                                                                                   | _                             | _       | _     |
| Lead limits              | 0x0095 –<br>0x0096 | 4     | Sets the rotor lead limit in motor steps                                                                                                                                                            | 0 – 2147483647                | 102400  | LD    |
| Lag limits               | 0x0097 –<br>0x0098 | 4     | Sets the rotor lag limit in motor steps                                                                                                                                                             | 0 – 2147483647                | 102400  | LG    |
| Position lead/lag        | 0x0099 –<br>0x009A | 4     | Represent the number of counts that the rotor leads or lags the stator.                                                                                                                             | -2147483647 to<br>+2147483647 | _       | LL    |
|                          |                    |       | A positive value indicates position lag. A negative value indicates position lead                                                                                                                   |                               |         |       |
| Locked rotor             | 0x009B             | 1     | Indicates the state of the rotor as locked (1) or unlocked (0).                                                                                                                                     | 0/1                           | 0       | LR    |
| Locked rotor timeout     | 0X009C -<br>0x009D | 2     | Sets the time in milliseconds in which the output bridge will disable after a locked rotor condition is detected.                                                                                   | 2 – 65535                     | 2000    | LT    |
| Make up frequency        | 0x009E –<br>0x009F | 4     | Sets the frequency in Hz at which missed steps are re-inserted into the move profile if make up mode = 1.                                                                                           | 306 – 5000000                 | 768000  | MF    |
| Make up                  | 0x00A0             | 1     | Sets the mode for make up steps.  0 = Off  1 = Make up steps at make up freq. (0x009E)  2 = Make up steps at system speed                                                                           | 0 – 2                         | 0       | MU    |
| Start configuration test | 0x00A1             | 1     | Start configuration test process                                                                                                                                                                    | _                             | _       | SC    |
| Reserved                 | 0x00A2 -<br>0x00A4 | _     | Reserved                                                                                                                                                                                            | _                             | _       | _     |
| Trip on hMT status       | 0x00A3 –<br>0x00A4 | 4     | Will execute an MCode subroutine on a preset hMTechnology status                                                                                                                                    | _                             | 0       | TA    |
| Torque direction         | 0x00A5             | 1     | Sets the torque direction plus $(1 - CW)$ or minus $(0 - CCW)$ as seen facing the motor shaft.                                                                                                      | 0 – 1                         | 1       | TD    |
| Set torque               | 0x00A6             | 1     | Sets the motor torque in percent for torque mode operation.                                                                                                                                         | 1 – 100                       | 25      | TQ    |
| Set torque speed         | 0x00A7             |       | Determines the system speed for torque mode (AS=3) The device will perform the following calculation based upon the value of TS:                                                                    | 0 – 255                       | 0       | TS    |
|                          |                    |       | Oscillator frequency = 10 MHz / (TS+2)                                                                                                                                                              |                               |         |       |

## 5.2 User variable registers

The user variable registers are ONLY used to interact with MCode programs being executed using the Manufacturer Specific function code. They cannot be used for MODBUS/TCP standalone operation.

If using V1 - V8 to store or retrieve data, the variables must be declared within the MCode program using the VA (Create user variable) command.

| Function | Address            | Bytes | Description     | Range                                                                       | Default | MCode |
|----------|--------------------|-------|-----------------|-----------------------------------------------------------------------------|---------|-------|
| V1       | 0x00A8 -<br>0x00A9 | 4     | User variable 1 | Variables may contain up to 11 digits including the sign and may be used to | _       | V1    |
| V2       | 0x00AA -<br>0x00AB | 4     | User variable 2 | store and retrieve data.                                                    | _       | V2    |
| V3       | 0x00AC -<br>0x00AD | 4     | User variable 3 |                                                                             | _       | V3    |
| V4       | 0x00AE -<br>0x00AF | 4     | User variable 4 |                                                                             | _       | V4    |
| V5       | 0x00B0 -<br>0x00B1 | 4     | User variable 5 |                                                                             | _       | V5    |
| V6       | 0x00B2 -<br>0x00B3 | 4     | User variable 6 |                                                                             | _       | V6    |
| V7       | 0x00B4 -<br>0x00B5 | 4     | User variable 7 |                                                                             | _       | V7    |
| V8       | 0x00B6 -<br>0x00B7 | 4     | User variable 8 |                                                                             | _       | V8    |

Page intentionally left blank

# **6** TCP/IP Configuration Utility

The TCP/IP configuration Utility is used to configure and rest the functionality of Lexium MDrive Ethernet units.

For installation and usage instructions see the Lexium MDrive Software Suite Manual available online at:

http://motion.schneider-electric.com

Page intentionally left blank

## **WARRANTY**

| Reference the web site at |           | achacidos alcotsia ac   | for the I   | ataatarrant.   | and product information  |      |
|---------------------------|-----------|-------------------------|-------------|----------------|--------------------------|------|
| reference the web site at | www.mouom | .scrineider-eiectric.co | m for the i | alesi warraniy | / and product informatio | ווכ. |



**Schneider Electric Motion USA**